Net sodium fluxes change significantly at anatomically distinct root zones of rice (Oryza sativa L.) seedlings.
نویسندگان
چکیده
Casparian bands of endodermis and exodermis play crucial roles in blocking apoplastic movement of ions and water into the stele of roots through the cortex. These apoplastic barriers differ considerably in structure and function along the developing root. The present study assessed net Na+ fluxes in anatomically distinct root zones of rice seedlings and analyzed parts of individual roots showing different Na+ uptake. The results indicated that anatomically distinct root zones contributed differently to the overall uptake of Na+. The average Na+ uptake in root zones in which Casparian bands of the endo- and exo-dermis were interrupted by initiating lateral root primordia (root zone III) was significantly greater than that at the root apex, where Casparian bands were not yet formed (root zone I), or in the region where endo- and exo-dermis with Casparian bands were well developed (root zone II). The measurement of net Na+ fluxes using a non-invasive scanning ion-selective electrode technique (SIET) demonstrated that net Na+ flux varied significantly in different positions along developing rice roots, and a net Na+ influx was obvious at the base of young lateral root primordia. Since sodium fluxes changed significantly along developing roots of rice seedlings, we suggest that the significantly distinct net Na+ flux profile may be attributed to different apoplastic permeability due to lateral root primordia development for non-selective apoplastic bypass of ions along the apoplast.
منابع مشابه
Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.)
Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice (Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, 'Dongdao-4' (moderately alkaline-tolerant) and 'Jiudao-51' (alkaline-sensitive), were subj...
متن کاملGenetic variation of root angle distribution in rice (Oryza sativa L.) seedlings
We developed a new method of using seedling trays to evaluate root angle distribution in rice (Oryza sativa. L), and found a wide genetic variation among cultivars. The seedling tray method can be used to evaluate in detail the growth angles of rice crown roots at the seedling stage by allocating nine scores (10° to 90°). Unlike basket methods, it can handle large plant populations over a short...
متن کاملProtective effect of exogenous nitric oxide on alleviation of oxidative damage induced by high salinity in rice (Oryza sativa L.) seedlings
To find the protective role of exogenous nitric oxide (NO) on salinity-stressed rice seedlings, a CRD-based factorial experiment with three replications was conducted in Agronomy Laboratory of the Faculty of Agricultural Sciences, University of Guilan, in 2012. The experimental design consisted of healthy and vigorous seedlings of two rice cultivars, Khazar and Goohar, the last already known as...
متن کاملToxic Effects of Heavy Metals on Early Growth and Tolerance of Cereal Crops
Metals have strong influence on development and growth of crops. To simulate how cereal crops are affected and/or tolerated from heavy metal contamination by disposal of unregulated wastes as soil amendments, the nutrient culture experiment was conducted with barley (Hordeum vulgare L.), rice (Oryza sativa L.) and wheat (Triticum aestivum L.) at control (0), 1, 5, and 10 μM of copper (Cu), zinc...
متن کاملStudies on sodium bypass flow in lateral rootless mutants lrt1 and lrt2, and crown rootless mutant crl1 of rice (Oryza sativa L.).
An apoplastic pathway, the so-called bypass flow, is important for Na+ uptake in rice (Oryza sativa L.) under saline conditions; however, the precise site of entry is not yet known. We report the results of our test of the hypothesis that bypass flow of Na+ in rice occurs at the site where lateral roots emerge from the main roots. We investigated Na+ uptake and bypass flow in lateral rootless m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of plant physiology
دوره 168 11 شماره
صفحات -
تاریخ انتشار 2011